
Using a Conversational RPC
This section covers the following topics:

Opening a Conversation
Closing a Conversation
Defining a Conversation Context
Modifying the System Variable *CONVID

Opening a Conversation
 To open a conversation

1. Specify an OPEN CONVERSATION statement on the client side.
2. In the OPEN CONVERSATION statement, specify a list of services (subprograms) as members of this

conversation.

The OPEN CONVERSATION statement assigns a unique conversation identifier to the system variable *CONVID.

More than one conversation may be open in parallel. If subprograms interfere with each other, the application
programs are responsible to manage the various conversations by setting the appropriate *CONVID, which is
evaluated by the CALLNAT instruction.

If the subprogram is a member of the current conversation (referred to by *CONVID), it will be executed at the
server process which is exclusively reserved for this conversation.
If it is not member of the current conversation, it will be executed in a different server process. This also applies
to different conversations.

A conversation can be opened on any program level and CALLNATs within this conversation can be executed on
any other program level below or above.

It is possible to open a client conversation within a remote CALLNAT executed on a server so the server acts as an
agent. As the client only controls its own conversations, and not the server’s, it is the application programmer’s
responsibility to ensure that the conversation on the server is closed properly before the main client is closed.

1Copyright Software AG 2002

Using a Conversational RPCUsing a Conversational RPC

Additional Restrictions

The conversational RPC can still be tested locally. To keep the behavior identical if you execute a conversational
CALLNAT remotely or locally, the following additional restrictions apply:

A CLOSE CONVERSATION is not possible within an object which is currently running as a member of this
conversation. This corresponds to the restriction that it is not possible to close a conversation from within a
remotely running program.
It is not possible to execute a conversational CALLNAT which is member of the conversation from within
another (or the same) member of this conversation. This corresponds to the restriction that it is not possible to
execute a conversational CALLNAT which is member of the client’s conversation from a server subprogram.
It is not recommended to open a conversation from within another conversation’s subprogram.

Closing a Conversation
 To close a conversation

Specify a CLOSE CONVERSATION statement on the client side.

This enables the client to close a specific conversation or all conversations. All context variables of the closed
conversation are then released and the server replicate will be available again for another client.

If you terminate Natural, you implicitly close all conversations.

When a server receives a CLOSE CONVERSATION request, it issues a CLOSE CONVERSATION ALL statement
so that all conversations the server might have opened (as agent) are also closed.

 To close a conversation with implicit BACKOUT TRANSACTION (Rollback)

By default, when a CLOSE CONVERSATION statement is executed, the Rollback option will be sent to the server
together with the CLOSE CONVERSATION statement. This will cause an implicit BACKOUT TRANSACTION
on the server side at the end of the conversation processing.

 To close a conversation with implicit END TRANSACTION (Commit)

You can use the user exit USR2032N available in library SYSEXT to cause an implicit END TRANSACTION on
the server side.

The exit has to be called before the next CLOSE CONVERSATION statement is executed. The result is that the
commit option is sent to the server together with the CLOSE CONVERSATION statement and that the server
executes an END TRANSACTION statement at the end of the conversation processing.

The commit option applies to the next CLOSE CONVERSATION statement executed by the client application.
After the conversation(s) has (have) been closed, the default option is used again. This means, that the following
CLOSE CONVERSATION statements will result again in a BACKOUT TRANSACTION statement.

Copyright Software AG 20022

Using a Conversational RPCClosing a Conversation

Defining a Conversation Context
During a conversation the subprograms that are members of this conversation may share a context area on this
server.

 To do so, declare a data area with the DEFINE DATA CONTEXT statement in each of the concerned
subprograms.

The subprograms, using a context area, behave in the same way if the conversation were local or remote. The
DEFINE DATA CONTEXT statement closely corresponds to the DEFINE DATA INDEPENDENT statement. All
rules which apply to the definition of AIV variables also apply to context variables, with the exception that a context
variable does not need to be prefixed by a "+".

The compiler does not check format/length definition because this requires that the variables be created by running a
program which includes all definitions for this application (as usual with AIVs). This makes no sense for context
variables, because a library containing RPC service routines is usually not application-dependent.

In contrast to AIVs, the caller’s context variables are not passed across CALLNAT boundaries. Context variables are
referenced by their name and the context ID they apply to. A context variable is shared by all service routines
referring to the same variable name within one conversation. Therefore each conversation has its own set of context
variables. Context variables cannot be shared between different conversations even if they have the same variable
name.

The context area will be reset to initial values when an OPEN CONVERSATION statement or a non-conversational
CALLNAT statement is performed.

Modifying the System Variable *CONVID
The system variable *CONVID (format I4) is set by the OPEN CONVERSATION statement and may be modified
by the application program.

Modifying *CONVID is only necessary if you are using multiple conversations in parallel.

3Copyright Software AG 2002

Defining a Conversation ContextUsing a Conversational RPC

	Using a Conversational RPC
	Opening a Conversation
	
	Additional Restrictions

	Closing a Conversation
	Defining a Conversation Context
	Modifying the System Variable *CONVID

